Science department - Year 11 scheme of work

National	National curriculum:					
https://ww	https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-of-study					
Combine	Combined Science Syllabus					
<u>https://qu</u>	https://qualifications.pearson.com/content/dam/pdf/GCSE/Science/2016/Specification/GCSE_CombinedScience_Spec.pdf					
Term	Title	Unit content	Key	Resource		
			vocabulary	links:		
		Autumn one				
Week 1	Biology	Key knowledge taught:	nucleus,			
		1.1 Explain the structures of plant cells, animal cells and bacteria	cell			
	Microscopes	1.2 Describe how specialised cells (sperm cell, egg cell and ciliated epithelial cells) are adapted	membrane,			
	and Cells	to their function	mitochondri			
		1.3 Explain how changes in microscope technology have enabled us to see cell structures and	a,			
		organelles with more clarity and detail than in the past	ribosomes,			
		Practical ideas:	vacuole,			
		1.6 Core Practical : Investigate biological specimens using microscopes, including	chloroplasts			
		magnification calculations and labeled scientific drawings from observation	, flagella,			
			haploid			
			nucleus,			
			cytoplasm			
Week2	Biology	Key knowledge taught:	daughter			
		3.3 Explain the role of meiotic cell division	cell,			
	Genetics and	3.4 Recap the structure of DNA	gametes,			
	Natural	3.5 Describe the genome as the entire DNA of an organism and a gene as a section of a DNA	DNA, gene,			
	Selection	molecule that codes for a specific protein	protein,			
		3.16 Calculate outcomes from monohybrid crosses and pedigree analysis for dominant and	genome,			
		recessive traits	phenotypic,			
		3.19 Know that most phenotypic features are the result of multiple genes	extract			
		3.21 Discuss the outcomes of the Human Genome Project and its application within medicine				
		Practical ideas:				
		3.6 Explain how DNA can be extracted from fruit				
		Modelling DNA				

Week 3	Biology	5.1 Describe health as defined by the World Health Organization (WHO)	WHO,	
		5.2 Describe the difference between communicable and non-communicable diseases	communica	
	Diseases	5.3 Explain why the presence of one disease can lead to a higher susceptibility to other	blenon-	
		diseases	communica	
	(a lot of	5.4 Describe a pathogen as a disease-causing organism	ble,	
	content but	5.5-5.7 Describe the following infections, how they're spread and how to stop the spread:	disease,	
	all recap -	cholera, tuberculosis, chalara, malaria and HIV	pathogen,	
	covered in	5.8 Explain how sexually transmitted infections (STIs) are spread and how this spread can be	virus,	
	ELC and FLC	reduced or prevented, including chlamydia and HIV	bacteria,	
	with	5.12 How physical barriers & chemical defenses of the human body protect from pathogens	fungi,	
	extension	5.13/5.14 Explain the role of the specific immune system of the human body in defense against	protists,	
	tasks)	disease and how the body responds to immunisation	STI, mucus,	
		5.16 Explain that antibiotics can only be used to treat bacterial infections	skin,	
		5.20 Describe that developing new medicines, including antibiotics, has many stages	lysozymes,	
		5.23/5.24 Describe that many non-communicable human diseases are caused by a number of	antigen,	
		factors, explain the effect of lifestyle on these diseases	immune	
		5.25 Evaluate some different treatments for cardiovascular disease	system,	
		Practical ideas:	antibodies,	
		Research lesson on diseases and prevention	BMI,	
			cardiovascu	
			larobesity,	
			malnutrition	
Week 4	Chemistry	Key knowledge taught:	proton,	
& 5		Atomic structure	neutron,	
	Atoms and	1.10 Calculate the numbers of protons, neutrons and electrons in atom	electron,	
	Bonding	1.11/1.12 Explain how the existence of isotopes results in relative atomic masses of some	ion, isotope,	
		elements not being whole numbers. Calculate the relative atomic mass of an element from the	covalent	
		relative masses and abundances of its isotopes	bond, ionic	
		Ionic Bonding	bond,	
		1.22/1.23 define an ion, calculate the numbers of protons, neutrons and electrons in simple	atomic	
			mass,	
		1.24 Explain the formation of ions in ionic compounds from their atoms (groups 1, 2, 6 and 7)	tullerene,	
		1.25 Explain the use of the endings –ide and –ate in the names of compounds	dot and	
		1.27 Explain the structure of an ionic compound as a lattice structure	cross	
		Covalent Bonding		

		1.30 Recall the typical size (order of magnitude) of atoms and small molecules		
		1.31 Explain the formation of simple molecular, covalent substances using dot and cross		
		diagrams, including hydrogen, hydrogen chloride, water, methane, oxygen, carbon dioxide		
		Types of Substance		
		1.32 Explain why elements and compounds can be classified as: a ionic b simple molecular		
		(covalent) c giant covalent d metallic and how the structure and bonding of these types of		
		substances results in different physical properties		
		1.38 Explain the properties of fullerenes including C60 and graphene		
		1.41 Describe the limitations of particular representations and models e.g. dot and cross, ball		
		and stick models and two- and three-dimensional representations		
		Practical ideas:		
		3D modeling bonding of bonding types		
Week 6	Chemistry	Key knowledge taught:	Mendeleev,	
		1.13/1.14 Describe Mendeleev's periodic table and how he used it to predict the existence of	periodic	
	Periodic	undiscovered elements.	table,	
	Table	1.15 Explain that Mendeleev thought he had arranged elements in order of increasing relative	group,	
		atomic mass but this was not always true because of the relative abundance of isotopes	period,	
		1.16 Explain the meaning of atomic number of an element	isotope,	
		1.17/1.18 explain groups and periods and identify metals and non-metals	metal, non-	
		1.19 Predict the electronic configurations of the first 20 elements in the periodic table as	metal,	
		diagrams and in the form, for example 2.8.1	electronic	
		1.20 Explain how the electronic configuration of an element is related to its position	configuratio	
		Practical ideas:	n	
		Model atomic structure and electronic configuration		
Week 7	Physics	Key knowledge taught:	scalar,	
		2.1-2.3 Describe and explain the difference between scalar and vector quantities	vector,	
	Forces	2.4/2.5 Recall vector and scalar quantities, including: a displacement/ distance b velocity/speed	quantity,	
	Recap	c acceleration d force e weight/mass f momentum g energy	gravitational	
		9.1 Describe, with examples, how objects can interact	,	
		a at a distance without contact due to gravitational, electrostatic and magnetic fields involved	electrostatic	
		b by contact due to normal contact force and friction	, magnetic,	
		c producing pairs of forces which can be represented as vectors	normal	
		9.3 Use scale vector diagrams to show resolution of forces, a net force, and equilibrium	contact,	
		situations	friction,	
		9.4 Draw and use free body force diagrams	balanced,	

		 9.5 Explain examples of multiple forces acting on an object that either lead to an overall resultant force or a result force of zero (if the forces are balanced) Practical ideas: Measuring forces (Newton metres) Forces investigation on friction 	resultant force	
		Autumn two		
Week 1	Physics	Key knowledge taught:	Newtons	
Week 2		2.13 Recall that the acceleration (g) is 10 m/s2, estimate the magnitudes of everyday	laws,	
	Newtons	accelerations	acceleration	
	Laws	2.14 Recall Newton's first law and apply it in simple situations (both with/without a net resultant	, mass,	
		force)	inertial	
		2.15 Recall and use Newton's second law as: F = m x a	mass,	
		force (newton, N) = mass (kilogram, kg) \times acceleration (metre per second squared, m/s2)	speed,	
		2.20 Explain that an object moving in a circular orbit at constant speed has a changing velocity	velocity,	
		2.21 Explain that for motion in a circle there must be a resultant force known as a centripetal	momentum,	
		force that acts towards the centre of the circle	reaction	
		2.22 Explain that inertial mass is a measure of how difficult it is to change the velocity of an	time	
		object (including from rest) and know that it is defined as the ratio of force over acceleration		
		2.23 Recall and apply Newton's third law both to equilibrium situations and to collision		
		Interactions and relate it to the conservation of momentum in collisions		
		2.24 Define momentum, recall and use the equation: $p = m \times v$		
		momentum (kilogram metre per second, kg m/s) = mass (kg) × velocity (m/s)		
		2.25 Describe examples of momentum in collisions		
		2.20 Use Newton's second law as. force (newton N_{i}) – change in momentum (kilogram matre per second kg m/s) ; time (second		
		(1000 (Newton, N) = 0)		
		2 27 Explain methods of measuring human reaction times and recall typical results		
		Practical ideas:		
		2.19 Core Practical: Investigate the relationship between force, mass and acceleration by		
		varying the masses added to trolleys		
		Measuring reaction times – ruler drop measurements		
Week 3	Physics	Key knowledge taught:	longitudinal,	
	-	4.5 Describe the difference between longitudinal & transverse waves using examples of sound,	transverse,	
		electromagnetic, seismic and water waves	light, sound,	

	Waves, Light and the Electromagn etic Spectrum	 4.7 Describe how to measure the velocity of sound in air and ripples on water surfaces 4.11/5.13 Recall that different substances may absorb, transmit, refract or reflect waves in ways that vary with wavelength 5.8 Explain that all electromagnetic waves transfer energy from source to observer 5.20 Recap: the order, uses and dangers of electromagnetic waves, recall that potential danger increases with increasing frequency 5.14 Explain the effects of differences in the velocities of electromagnetic waves different substances 5.23 Recall that radio waves can be produced by electrical circuits 5.24 Recall that changes in atoms and nuclei can: a generate radiations over a wide frequency range b be caused by absorption of a range of radiations Practical ideas: 5.9 Core Practical: Investigate refraction in rectangular glass blocks in terms of the interaction of electromagnetic waves with matter 4.17 Core Practical: Investigate the suitability of equipment to measure the speed, frequency and wavelength of a wave in a solid and a fluid 	electromag netic, radio wave, microwave, infra-red, visible, ultraviolet, x-ray, gamma, frequency	
Week 4		Consolidation, revision and assessment GCSE style exam questions taken from the topics covered 45-minute paper covering: <i>Biology: microscopes and cells, genetics and diseases.</i> [15 marks] <i>Chemistry: atoms and bonding, periodic table</i> [15 marks] <i>Physics: forces and Newtons Laws</i> [15 marks]		
Week 5	Physics Radioactivity	Key knowledge taught: 6.2 Recall the typical size of atoms and small molecules 6.3 Describe the structure of nuclei of isotopes 6.6 Recall that an atom is neutral as the number of protons equals the number of electrons 6.7 Recall that in each atom its electrons orbit the nucleus at different set distances 6.8 Explain that electrons change orbit when there is absorption/ emission of electromagnetic radiation 6.11 Recall that alpha, β – (beta minus), β + (positron) and gamma rays are ionising radiations 6.12/6.13 Explain what is meant by background radiation and where it comes from 6.14 Describe methods for measuring and detecting radioactivity 6.15 Recall: alpha particle is equivalent to a helium nucleus, a beta particle is an electron emitted from the nucleus and a gamma ray is electromagnetic radiation. Compare their penetration and ionisation	atom, molecule, isotope, proton, nucleus, ionising radiation, alpha, beta, gamma	

		6.17 Describe how and why the atomic model has changed over time including the plum pudding model and Rutherford alpha particle scattering leading to the Bohr model 6.18 Describe the process of β - decay (a neutron becomes a proton plus an electron) Describe the process of β + decay (a proton becomes a neutron plus a positron) 6.20 Explain the effects on the atomic (proton) number and mass (nucleon) number of radioactive decays (α , β , γ and neutron emission) 6.21 Recall that nuclei that have undergone radioactive decay often undergo nuclear rearrangement with a loss of energy as gamma radiation 6.22 Lise given data to belance nuclear equations in terms of mass and charge		
		Practical ideas		
		Video showing penetrating power of radiation and alpha particle scattering experiment		
Week 6	Biology Plants and Animals	 Key knowledge taught: <u>Plants</u> 6.4/6.6 Explain the interactions of temperature, light intensity and carbon dioxide concentration in limiting the rate of photosynthesis. Rate is directly proportional to light intensity, inversely proportional to distance from light source 6.8 Explain how the structures of the xylem and phloem are adapted to their function in the plant, including: a lignified dead cell in xylem transporting water and minerals through the plant b living cells in phloem using energy to transport sucrose around the plant 6.9 Explain how water and mineral ions are transported through the plant by transpiration, including the structure and function of the stomata 6.10 Describe how sucrose is transported around the plant by translocation 6.12 Explain the effect of environmental factors (light, air movement, temperature) on the rate of water uptake by a plant 6.13 Demonstrate an understanding of rate calculations for transpiration <u>Animals</u> 7.1 Describe where hormones are produced and how they are transported from endocrine glands, ovaries and testes 7.2 Explain that adrenalin is produced by the adrenal glands to prepare the body for fight or flight, including: a increased heart rate b increased blood pressure c increased blood flow to the muscles d raised blood sugar levels by stimulating the liver to change glycogen into glucose 	temperature , light intensity, carbon dioxide, photosynthe sis, xylem, phloem, mineral, sucrose, transpiratio n	

		7.3 Explain how thyroxine controls metabolic rate as an example of negative feedback,		
		including:		
		a low levels of thyroxine stimulates production of TRH in hypothalamus		
		b this causes release of TSH from the pituitary gland		
		c TSH acts on the thyroid to produce thyroxine d when thyroxine levels are normal thyroxine		
		inhibits the release of TRH and the production of TSH		
		Practical ideas:		
		6.5 Core Practical: Investigate the effect of light intensity on the rate of photosynthesis		
Week 7	Biology	Key knowledge taught:	quadrat,	
		9.6 Determine the number of organisms in a given area from field-work (guadrats and belt	belt	
	Ecosystems	transects)	transect,	
	and Material	9.9 Explain the positive and negative human interactions within ecosystems and their impacts	ecosystem,	
	Sciences	on biodiversity, including: a fish farming b introduction of non-indigenous species c	fish farming,	
		eutrophication	animal	
		9.10 Explain the benefits of maintaining local and global biodiversity, including the conservation	conservatio	
		of animal species and the impact of reforestation	n,	
		9.12 Describe how different materials cycle through the abiotic and biotic components of an	reforestatio	
		ecosystem	n, water	
		9.13 Explain the importance of the carbon cycle	cycle,	
		9.14 Explain the importance of the water cycle	carbon	
		9.15 Explain how nitrates are made available for plant uptake	cycle	
		Practical ideas:	-	
		9.5 Core Practical: Investigate the relationship between organisms and their environment		
		using field-work techniques, including quadrats and belt transects		
		Spring one		
Week 1	Chemistry	Key knowledge taught:	acid, alkali,	
		Acid	base,	
	Acids	3.1 Recall that in solution) acids are sources of hydrogen ions and alkalis are sources of	concentrate	
		hydroxide ions	d, dilute,	
		3.4 Recall that the higher the concentration of hydrogen ions in an acidic solution, the lower the	hydroxide	
		pH; and the higher the concentration of hydroxide ions in an alkaline solution, the higher the pH	ion,	
		3.5 Recall that as hydrogen ion concentration in a solution increases by a factor of 10, the pH	hydrogen	
		of the solution decreases by 1	ion,	
		3.7/3.8/3.9/3.10 Explain the terms dilute, concentrated, weak acid, strong acid, alkali and base	reactant,	
			concentratio	

Week 2	Chemistry Electrolysis	 3.8 Explain the terms weak and strong acids, with respect to the degree of dissociation into ions 3.13/3.14 Describe a neutralisation reaction as a reaction between an acid and a base in which hydrogen ions (H+) from the acid react with hydroxide ions (OH–) from the alkali to form water 3.16 Explain why, if soluble salts are prepared from an acid and a soluble reactant: a titration is used b the acid and the soluble reactant are then mixed in the correct proportions c the solution is only salt and water 3.19 Recall the general rules which describe the solubility of common types of substances in water, use them to predict if precipitates are formed, naming any that are 3.21 Describe the method used to prepare a pure, dry sample of an insoluble salt Practical ideas: 3.6 Core Practical: Investigate the change in pH on adding powdered calcium hydroxide or calcium oxide to a fixed volume of dilute hydrochloric acid 3.17 Core Practical: Investigate the preparation of pure, dry hydrated copper sulfate crystals starting from copper oxide including the use of a water bath 3.18 Describe how to carry out an acid-alkali titration, using burette, pipette and a suitable indicator, to prepare a pure, dry salt Electrolytic process 3.24 Explain the movement of ions during electrolysis (positive charged cations move to cathode (-), negatively charged anions move to anode (+)) 3.27 Write half equations for reactions occurring at the anode and cathode in electrolysis 3.28/3.29 Explain oxidation and reduction in terms of loss or gain of electrons, reduction occurs at the anode. 3.30 Explain the formation of the products in the electrolysis of copper sulfate crystals starting from copper oxide including the use of a water bath 3.18 Describe how to carry out an acid-alkali titration, using burette, pipette and a suitable indicator, to prepare a pure, dry salt 	n, neutralisatio n, titration Electrolysis, electrolytes, electrodes, cations, anions, cathode, anode, copper sulfate, electrons, oxidation, reduction	
Week 3	Chemistry	Key knowledge taught: 4.2 Explain displacement reactions as redox reactions, in terms of gain or loss of electrons	Displaceme nt, reactivity	
			series,	

	Extracting	4.3 Explain the reactivity series of metals (potassium, sodium, calcium, magnesium, aluminum,	oxidation,	
	Ivietais and	(carbon), zinc, iron, (nydrogen), copper, silver, gold) in terms of the reactivity of the metals with water and dilute acids and that these reactions show the relative tendency of metal stores to	ore motal	
	Equilibria	form entions	overaction	
		4.5 Explain oxidation as the gain of oxygen and reduction as the loss of oxygen	life cycle	
		4.6 Recall that the extraction of metals involves reduction of ores	assessment	
		4.8 Evaluate alternative biological methods of metal extraction (bacterial and phytoextraction)	000000mem	
		4.9 Explain how a metal's relative resistance to oxidation is related to its position in the	, equilibrium	
		reactivity series	reversible.	
		4.11 Describe that a life-cycle assessment for a product involves consideration of the effect on	ammonia.	
		the environment of obtaining the raw materials, manufacturing the product, using the product	nitrogen,	
		and disposing of the product when it is no longer useful	Haber	
		4.12 Evaluate data from a life cycle assessment of a product	process,	
		Reversibly reactions and equilibria	iron catalyst	
		4.13 Recall that chemical reactions are reversible, the use of the symbol \rightleftharpoons in equations and		
		that the direction of some reversible reactions can be altered by changing the reaction		
		conditions		
		4.14 Explain what is meant by dynamic equilibrium		
		4.15 Describe the formation of ammonia as a reversible reaction between nitrogen (extracted		
		from the air) and hydrogen (obtained from natural gas) and that it can reach a dynamic		
		equilibrium 4.16 Decell the conditions for the Hoher process act a temperature 450 °C b procesure 200		
		4.16 Recall the conditions for the Haber process as: a temperature 450 $^{\circ}$ C b pressure 200 atmospheres c iron catalyst		
		4.17 Predict how the position of a dynamic equilibrium is affected by changes in: a temperature		
		h pressure c concentration		
		Practical ideas:		
		Displacement reactions of metals		
		Investigating reactivity of metals using water and weak acids		
Week 4	Key	Key knowledge taught:	Relative	
and	Concepts in	Calculations involving masses	atomic	
Week 5	Chemistry	1.43 Calculate: a relative formula mass given relative atomic masses	masses,	
	(calculations)	b percentage by mass of an element in a compound given relative atomic masses	empirical	
	and Rates of	1.44 Calculate the formulae of simple compounds from reacting masses or percentage	formula,	
	Reaction	composition and understand that these are empirical formulae	reactions,	
		1.45 Deduce:	products,	

a the empirical formula of a compound from the formula of its molecule	balanced	
b the molecular formula of a compound from its empirical formula and its relative molecular	equations,	
mass	Avogadro's	
1.46 Describe an experiment to find the empirical formula of a simple compound e.g.	constant,	
magnesium oxide	moles,	
1.47 Explain the law of conservation of mass applied to closed and non-enclosed systems (with	activation	
gases)	energy,	
1.48 Calculate masses of reactants and products from balanced equations	endothermi	
1.49 Calculate the concentration of solutions in g dm-3	С,	
1.50 Recall that one mole of particles of a substance is defined as:	exothermic,	
a the Avogadro constant number of particles (6.02 × 1023 atoms, molecules, formulae or ions)	energy	
of that substance	profile	
b a mass of 'relative particle mass' g		
1.51 Calculate the number of:		
a moles of particles of a substance in a given mass of that substance and vice versa		
b particles of a substance in a given number of moles of that substance and vice versa		
c particles of a substance in a given mass of that substance and vice versa		
1.52 Explain why, in a reaction, the mass of product formed is controlled by the mass of the		
reactant which is not in excess		
1.53 Deduce the stoichiometry of a reaction from the masses of the reactants and products		
Rates of Reaction		
7.2 Suggest practical methods for determining the rate of a given reaction		
7.7 Explain now the addition of a catalyst increases the rate of a reaction in terms of activation		
energy		
Teat Energy Changes in Chemical Reactions		
7.12 Recall that the everall best energy change for a reaction is a systhermic if more best		
7.13 Recall that the overall heat energy change for a reaction is. a exothermic if more heat		
reactants		
b and thermic if less heat anorally is released in forming heads in the products than is required		
in breaking bonds in the reactants		
7.14 Calculate the energy change in a reaction given the energies of bonds (in k I mol-1)		
7 15/ 7 16 Draw and label reaction profiles for endothermic and exothermic reactions		
identifying and explaining the term activation energy		
Practical ideas:		

		7.1 Core Practical: Investigate the effects of changing the conditions of a reaction on the rates		
		of chemical reactions by: a measuring the production of a gas (in the reaction between		
		hydrochloric acid and marble chips) b observing a colour change (in the reaction between		
		sodium thiosulfate and hydrochloric acid)		
		Measuring temperatures of endo- and exo-thermic reactions		
		Spring two		
Week 1	Chemistry	Key knowledge taught:	Hydrocarbo	
	-	8.5 Explain how hydrocarbons in different fractions differ from each other in: the number of	nfraction,	
	Fuels and	carbon and hydrogen atoms their molecules contain b boiling points c ease of ignition d	molecular	
	Earth	viscosity and are mostly members of the alkane homologous series	formula,	
	Science	8.6 Explain an homologous series as a series of compounds which: a have the same general	atmosphere	
		formula	,	
		b differ by CH2 in molecular formulae from neighboring compounds c show a gradual variation	homologous	
		in physical properties, as exemplified by their boiling points d have similar chemical properties	series	
		8.26 Describe: a the composition of today's atmosphere		
		b the potential effects on the climate of increased levels of carbon dioxide and methane		
		generated by human activity, including burning fossil fuels and livestock farming		
		c that these effects may be mitigated: consider scale, risk and environmental implications		
		Practical ideas:		
		Modelling hydrocarbons with molymods		
Mook 2	Dhysias	Koy knowledge teught		
vveek z	Physics	A Receil and use the equation to coloulate the change in growitational DE when an object in	GPE, NE,	
		5.1 Recail and use the equation to calculate the change in gravitational PE when an object is	joules,	
	Energy	Taised above the ground: $\triangle GPE = III \times g \times \Delta II$	energy,	
		change in GPE (J) = mass (kg) x gravitational lield strength (N/kg) x change in vertical height (dissipated,	
		(II)	work done,	
		3.2 Recail and use the equation to calculate the amounts of energy associated with a moving	kilograms,	
		Object.	useiui	
		Kinetic energy (joure, J) = $\frac{1}{2}$ X mass (kilogram, kg) x speed (metre/second) 2.6 Explain that where energy transfers in a closed system there is no not change to the total	energy,	
		onorgy	wasted	
		3.7 Explain that machanical processes become wasteful when they cause a rise in temperature	energy	
		s. <i>T</i> Explain that mechanical processes become wasterul when they cause a fise in temperature		
		3.8 Explain using events how in all events shanges operative desireted as that it is stored		
		in loss usoful wave		
		I II less userur ways		

		8.4 Identify the different ways that the energy of a system can be changed a through work done by forces b in electrical equipment c in heating		
		(ioule 1) is equal to work done (ioule 1)		
		(Joule, 5) is equal to work dolle (joule, 5) 8.6 Recall and use the equation: E = E x d		
		work done (joule 1) – force (newton N) x distance moved in the direction of the force (metre		
		m)		
		8.7 Describe and calculate the changes in energy involved when a system is changed by work		
		done by forces		
		Practical ideas:		
		GPE and KE investigation with bouncing balls – relationship between drop height and bounce		
		height		
Week 3	Physics	Key knowledge taught:	Potential	
		10.13 Recall and use the equation: $V = I \times R$	difference,	
	Electricity	potential difference (volt, V) = current (ampere, A) × resistance (ohm, Ω)	current,	
		10.14 Explain why two resistors are in series increases resistance, but two in parallel	resistance,	
		decreases	volts, amps,	
		10.15 Calculate the currents, potential differences and resistances in series circuits	ohms,	
		10.16 Explain the design and construction of series circuits for testing and measuring	series,	
		10.18 Explain how current varies with potential difference for the following devices and how this	parallel,	
		relates to resistance a filament lamps b diodes c fixed resistors	LDR,	
		10.19 Describe how the resistance of a light-dependent resistor (LDR) varies with light intensity	thermistor,	
		10.20 Describe how the resistance of a thermistor varies with change of temperature	live wire,	
		10.25 Explain ways of reducing unwanted energy transfer through low resistance wires	neutral wire,	
		10.26 Describe the advantages and disadvantages of the heating effect of an electric current	earth wire	
		10.27 Use the equation: $E = I \times V \times t$		
		energy transferred (joule, J) = current (ampere, A) × potential difference (volt, V) × time		
		(second, s)		
		10.28 Describe power: the energy transferred per second, measured in watts		
		10.30 Explain how the power transfer in any circuit device is related to the potential difference		
		across it and the current in it		
		no.52 Describe now energy is transiened from batteries and the a.c. mains to the energy of meters and boating devices		
		10.00 Recall the notential differences between the live, neutral and earth mains wires		
		10.40 Netail the potential unreferices between the live, fleutial and earth finallis wires and earth		
		10.41 Explain the dangers of providing any connection between the live wire and earth		

		10.42 Describe, with examples, the relationship between the power ratings for domestic		
		electrical appliances and the changes in stored energy when they are in use		
		Practical ideas:		
		10.17 Core Practical: Construct electrical circuits to: a investigate the relationship between		
		notential difference, current and resistance for a resistor and a filament lamp b test series and		
		parallel circuits using resistors and filament lamps		
		10.21 Explain how the design and use of circuits can be used to explore the variation of		
		resistance in the following devices a filament lamps h diodes c thermistors d I DRs		
		Wiring a plug		
Week 4		science week - TBC		
Wook 5		Consolidation, revision and accomment		+
Week 5		COSE style even guestions token from the topics severed 60 minute paper severing enything		
		over the example of the state of the second second second and the second s		
Week 6	Mognoto	<u>Except</u> magnets in physics. 20 marks for each science, mixture of paper 1 and 2 questions.	Salanaid	
vveek o	magnets	Acy knowledge taught:	Solenolu,	
		12.9 Explain now inside a sciencia (an example of an electromagnet) the fields from individual	magnetic	
		COIIS	field,	
		a add together to form a very strong almost uniform field along the centre of the solehold	Fleming's	
		b cancel to give a weaker field outside the solenoid	left-hand	
		12.10 Recall that a current carrying conductor placed near a magnet experiences a force and	rule,	
		that an equal and opposite force acts on the magnet	magnetic	
		12.11 Explain that magnetic forces are due to interactions between magnetic fields	flux,	
		12.12 Recall and use Fleming's left-hand rule to represent the relative directions of the force,	transformer,	
		the current and the magnetic field for cases where they are mutually perpendicular	national	
		12.13 Use the equation: $F = B \times I \times I$	grid,	
		force on a conductor at right angles to a magnetic field carrying a current (newton, N) =	potential	
		magnetic flux density (tesla, T or newton per ampere metre, N/A m) × current (ampere, A) ×	difference	
		length (metre, m)		
		13.2 Recall the factors that affect the size and direction of an induced potential difference, and		
		describe how the magnetic field produced opposes the original change		
		13.5 Explain how A.C in one circuit can induce a current in another circuit (used in		
		transformers)		
		13.9 Explain where and why step-up and step-down transformers are used in the national grid		
		13.10 Use the power equation (for transformers with 100% efficiency):		
		potential difference across primary coil (volt, V) × current in primary coil (ampere, A) = potential		
		difference across secondary coil (volt, V) × current in secondary coil (ampere, A)		

		Practical ideas:						
		Making simple (homopolar) motors						
		Demonstration of a transformer						
Summer one								
Week 1	Biology	Week 1 – Paper 1 focus: cells and control, genetics, natural selection and genetic						
Week 2	Revision	modification, health, disease and development of medicines						
		Week 2 – Paper 2 focus: plant structure and their functions, animal co-ordination, control and homeostasis, exchange and transport in animals, ecosystems and material cycles						
Week 3	Chemistry	Week 1 – Paper 3 focus: states of matter & mixtures, chemical changes, extracting metals &						
Week 4	Revision	equilibria						
WCCR 4	T C VISION	Week 2 – Paper 4 focus: groups in the periodic table, rates and reaction and energy changes						
		fuels and Earth science						
Week 5	Physics	Week 1 – Paper 5 focus: key concepts, motion and forces, conservation of energy, waves,						
Week 6	Revision	light and the electromagnetic spectrum, radioactivity						
		Week 2 - Paper 6 focus: energy - forces doing work, forces and their effects, electricity and						
		circuits, magnetism and the motor effect, electromagnetic induction, particle model, forces and						
		matter						
Summer two								
Up until		Key knowledge taught:						
final		Revision – tailored around specific exam dates.						
exam		Focus on exam technique and preparing students for formal GCSE exams.						
		Practical ideas:						
		Revisit all core practical's						